Misiurewicz polynomials for rational maps with nontrivial automorphisms

نویسندگان

چکیده

We consider a one-parameter family of degree $d\ge 2$ rational maps with an automorphism group containing the cyclic order $d$. construct polynomial whose roots correspond to parameter values for which corresponding map is post-criticall

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Misiurewicz Maps Are Rare

Set P 0(f, c) = P (f, c). The set P (f) = P 0(f) is the postcritical set of f . We will also use the notion postcritical set for P k(f) for some suitable k ≥ 0. Denote by J(f) the Julia set of f and F (f) the Fatou set of f . Recall that the ω-limit set ω(x) of a point x is the set of all limit points of ∪n≥0f n(x). A periodic point x with period p is a sink if there is a neighborhood around x ...

متن کامل

Rational Misiurewicz Maps Are Rare Ii

The notion of Misiurewicz maps has its origin from the paper [10] from 1981 by M. Misiurewicz. The (real) maps studied in this paper have, among other things, no sinks and the omega limit set ω(c) of every critical point c does not contain any critical point. In particular, in the quadratic family fa(x) = 1 − ax 2, where a ∈ (0, 2), a Misiurewicz map is a non-hyperbolic map where the critical p...

متن کامل

Nontrivial Rational Polynomials in Two Variables Have Reducible Fibres

We shall call a polynomial map f : C → C a “coordinate” if there is a g such that (f, g) : C → C is a polynomial automorphism. Equivalently, by AbhyankarMoh and Suzuki, f has one and therefore all fibres isomorphic to C. Following [7] we call a polynomial f : C → C “rational” if the general fibres of f (and hence all fibres of f) are rational curves. The following theorem, which says that a rat...

متن کامل

Misiurewicz points for polynomial maps and transversality

The behavior under iteration of the critical points of a polynomial map plays an essential role in understanding its dynamics. We study the special case where the forward orbits of the critical points are finite. Thurston’s theorem tells us that fixing a particular critical point portrait and degree leads to only finitely many possible polynomials (up to equivalence) and that, in many cases, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2021

ISSN: ['0065-1036', '1730-6264']

DOI: https://doi.org/10.4064/aa200413-23-9